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Abstract— The finite-difference time-domain (FDTD) method is
extended to include magnetized ferrites. The treatment of the
ferrite material is based on the equation of motion of the magne-
tization vector. Magnetic losses are also included in the equation
of motion by means of Gilbert’s approximation of the phe-
nomenological Landau-Lifschitz damping term. The discretiza-
tion scheme is based on central finite-differences and linear
interpolation. This scheme allows the fully explicit nature of the
FDTD method to be maintained. This extension of the FDTD
method to magnetized ferrites is applied to the full-wave analysis
of ferrite-loaded waveguides. The dispersion curves are calculated
by using a recently proposed 2D-FDTD formulation for disper-
sion analysis which has been adapted to the present problem.
The results for both the phase and attenuation constants of
various transversely and longitudinally magnetized ferrite-loaded
waveguides are compared with the exact values and with those
obtained by means of Schelkunoff’s method.

1. INTRODUCTION

ERRITES are basic materials in the development of non-

reciprocal and control devices such as circulators and
phase shifters due to the fact that the magnetic constitutive
characteristics of ferrites can be controlled by the application
of a dc magnetic bias field. However, the analysis of structures
with magnetized ferrites is normally very complex and in most
cases does not admit an analytical solution. Consequently, the
development of new numerical techniques that are capable of
analyzing these structures is of great interest.

The finite-difference time-domain (FDTD) method is now a
well-established numerical technique for the analysis of a great
vatiety of electromagnetic problems. It is based on the direct
discretization of Maxwell’s time-dependent curl equations by
using central finite-differences [1]. The FDTD method has
been gaining in popularity because it has several advantages.
For example, it leads to an explicit scheme (avoiding matrix
inversion): the time domain solution is obtained directly; and
a broadband frequency response can be obtained from a single
computer simulation. The reported applications of this method
range from radiation and scattering problems [2] to others
involving guided waves [3], [4] or eigenvalue computation [5].

The FDTD method was initially proposed to handle
isotropic, non-dispersive materials [1]. Later extensions have
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made it possible to apply the method to anisotropic materials,
which are characterized by diagonal tensors [5], and also
to dispersive materials [6]-[8]. Recently the FDTD method
has been extended to include more complex media such as
magnetized ferrites [9]-[11] and magnetized plasmas [12].
These materials, in addition to their highly dispersive nature,
are characterized by tensorial constitutive parameters with
nonzero off-diagonal elements (tensorial permeability in the
case of ferrites and permittivity in that of plasmas). Magnetized
ferrites have been treated by means of the equation of motion
of the magnetization vector (differential approach) [9]-[11],
while magnetized plasmas have been handled by working with
the permittivity tensor and applying recursive convolution
[12]. Based on the duality of these media, both approaches
should be valid for analyzing both media. A formulation based
on the spatial network method has been presented in [13] that
allows ferrites to be analyzed in the time-domain and is also
based on the equation of motion of the magnetization vector.
However, the FDTD method is simpler and more efficient
than the spatial network method [14].

This paper provides a detailed presentation of the extended
FDTD formulation for the treatment of saturated magnetized
ferrites, which was briefly introduced in [11]. Furthermore,
the new algorithm is applied to the full-wave analysis of
waveguides containing ferrites by adapting a recently proposed
2D-FDTD formulation to the present problem. Because of the
practical relevance of the distinction, two different cases are
considered according to the relative angle between the direc-
tion of the dc magnetic field and the wave propagation: the
transverse and the longitudinal magnetization cases. The re-
sults for both the phase and attenuation constants are compared
with the exact values and with those obtained by Schelkunoff‘s
method [15]. For a given phase constant, the frequencies and
quality factors (the latter should be calculated to obtain the
corresponding attenuation constants) are computed by using
Prony’s method [16].

II. FORMULATION

Maxwell’s time-dependent curl equations can be expressed
as
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where F is the electric field, H the magnetic field, B the
magnetic flux density, ¢q is the permittivity of free-space, and
€ the dielectric constant. An electric constitutive equation of
the form D = ereoﬁ has been assumed in (2).

In addition to (1) and (2), three more scalar equations—the
magnetic constitutive equations—must be taken into account.
These equations describe the interaction of the electromagnetic
fields with the ferrite from a macroscopic point of view. It is
assumed that the ferrite is saturated by a dc magnetic field
applied in the z-direction, I-—I'z = H,d,. The interaction of
the magnetic field with the ferrite can be described by the
equation of motion of the magnetization vector with Gilbert’s
approximation of the Landau-Lifschitz damping term [17].
Under the small signal approximation, the equation of motion
can be written in terms of B and H , and in scalar form, as

0B, OH,

ot - N/Oa—tw == ’YMO(HiBy - (M, + Hz)/ffoHy)
0B, OH,
_O‘< ar Mo at) 4)
0B, OH,
5 Mo =~ vo((Ms + Hi)puoHy — HiBy)
0B, OH,
+ a(ﬁ“ - MO_@T;) “)
Bz = [L()HZ (5)

where ~y is the gyromagnetic ratio, o the damping constant,
to the permeability of free-space, and M, is the saturation
magnetization.

An essential assumption in the derivation of the equation of
motion is that the ferrite is infinite. In actual devices, the ferrite
sample is obviously finite. As a consequence, demagnetizing
effects appear, hence the dc magnetic field inside the ferrite
sample, H; is always less than (or equal to for some particular
sample geometries) the applied dc magnetic field, H,. Only for
some simple ferrite sample geometries can the demagnetizing
factors be calculated analytically [17]. The evaluation of H; in
actual complex samples is a problem that is not considered in
this paper, where it is assumed that the value of H, is known.

The dispersive and anisotropic nature of the magnetized
ferrite is modeled in the time domain by equations (3)—(5).
This is analogous to modelling by means of the Polder
permeability tensor in frequency domain. In fact, this tensor
can easily be obtained from (3)—(5) by assuming a time
dependence of the form e?“? for the fields vectors.

Equations (3)—(5), which are the required magnetic con-
stitutive relations, together with (1) and (2) form a system
of coupled differential equations. To simulate the electro-
magnetic wave propagation inside a ferrite material by a
finite-difference model, these equations must be discretized
by means of a suitable scheme. This discretization provides
a system of difference (algebraic) equations that replace the
original differential problem.
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Fig. 1. Three-dimensional extended Yee mesh for the analysis of magnetized
ferrites with dc magnetic field applied in the z-direction.

A. Discretization

Since the dc magnetic field is applied in the z-direction, the
H; and H, components of the magnetic field are coupled.
Hence, these two components must be discretized at the
same points of the space and at the same instant of time.
Furthermore, the H field and the B field must be discretized
at the same instant of time. Following Yee’s notation [1], any
function of space and time can be discretized as Fn{, 5, k) =
F(ilAz, jAy, kAL, nAt) = F(z,y, 2,t), where Az, Ay, and
Az are the space increments in the x, y and z coordinate
directions; At is the time step; and i, j, k and n are integers.
Taking these considerations into account, Yee’s unit cell [1]
is modified as shown in Fig. 1.

Equation (5) is directly incorporated into equation (1).
The resulting equations (1) and (2) are discretized as in the
isotropic case [1]. Equations (3) and (4) are discretized in
time by using central finite-differences and linear interpolation.
After (3) and (4) have been discretized, they are decoupled (by
solving for H2t*/? and H1'/?) and we obtain

HWY2 = foHp =% 4 fBRFY2 4 f,BR=Y/2

+ faBy T+ 1By TV 4 s HY TV (6)
H;L+1/2 — fOH;_1/2 + le;L—I-l/Z + f2B3—1/2
— fsBR V2 — [ BRTYE — g HRTVR ()

Expressions for evaluating the coefficients f; (z = 0,..,5) are
given in the appendix.

After this discretization in time, the field components in
equations (6) and (7) are still continuous functions of the
space. Hence, these equations are valid for any number of
space dimensions and their evaluation at the required mesh
points is sufficient to obtain the H, and H, components of
the magnetic field at the instant ¢t = (n + 1/2)At.

B. EDTD Algorithm for Magnetized Ferrites
The new FDTD algorithm for magnetized ferrites has the
following steps in each time iteration:
1) B2 Brt2 and HPY? are calculated by using
the difference form of (1).
2) H2Y? and HJ"/? are calculated by using (6) and
(7), respectively, where HPY? H;l_l/z, B2 ang
B2 */? are obtained from the previous iteration, and
BtY/2 and BIY/? are obtained from the step 1. As
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can be seen in Fig. 1, (6) and (7) are discretized at
mesh points where both H, and H, are available, but
only one component of the magnetic flux density (B,
or B,) is known. The unknown component is calculated
by using linear interpolation. For example, at the point
(4,74 1/2.k+1/2) (see Fig. 1), By is calculated from
By(iog +1/2,k +1/2) =3(By(i + 1/2,5,k +1/2)
+ By(i+1/2,j+1,k+1/2)
+By(i—1/2,j,k+1/2)
+ By(t—1/2,5+1,k+1/2))
8)
3) Eptl, ExFL, and EZT! are calculated by using the
difference form of (2).

These three steps are repeated in each time iteration in order
to obtain the time domain electromagnetic response in the
ferrite material.

The unit cell shown in Fig. 1, can be simplified by removing
Hy(i4+1/2,5,k + 1/2)and Hy(%,5 + 1/2,k + 1/2), which
leads to a scheme with a unit cell of eight field components.
In order to carry out step 2 of the algorithm, these removed
field components can be calculated by interpolation as in
the case of the components B,(: + 1/2,7.k + 1/2) and
B,(s,5 + 1/2,k + 1/2). This is a more efficient approach;
however, a drawback arises when the ferrite sample is next
to a metallic wall. For example, if a metallic wall is located
in a plane 7 = constant, the interpolation of I, at the point
(4, +1/2,k + 1/2) requires the value of H, in the metallic
plane, which is unknown. Consequently, extrapolation must be
used, which may introduce some inaccuracy. If the metallic
wall is perpendicular to the dc magnetic field, H, is zero at
the wall and the eight-component unit cell can be used without
any extrapolation.

ITI. FULL-WAVE ANALYSIS OF FERRITE-LOADED WAVEGUIDES

Apart from the practical interest of using FDTD tech-
niques to study propagation characteristics in waveguides and
transmission lines, within the FDTD approach there is an
important topic: the design of optimal absorbing boundary
conditions to terminate guides with matched loads. This design
problem requires the propagation constants of the first modes
of the terminal guides to be known. The full-wave analysis of
guiding structures is a 3-D problem that can be reduced to an
equivalent 2-D problem by noticing that for a uniform guide
with an arbitrary cross-section, the functional dependence
of the modes in the direction of propagation is analytically
known. In general, an exponential term must be used; however,
in particular cases (isotropic, uniaxial or biaxial materials)
sinusoidal functions can be used. Two different approaches
have been proposed to derive the 2-D FDTD formulation.
In the direct approach, the modal term is first included in
the differential form of Maxwell’s equations, and then the
discretization is carried out in a 2-D space (the transverse
section of the guide) [18], [19]. In the indirect approach,
Maxwell’s curl equations are first discretized in a 3-D space
and then the formulation is reduced by substituting for the

modal term [20], [21]. Both approaches involve a 2D-mesh.
In this paper, the direct approach is adopted because the
3-D discretization introduces a larger numerical dispersion
error than the 2-D discretization. Moreover, although the 3D-
problem is also reduced to a 2D-problem in the indirect
approach, the spatial increment in the direction of propagation
appears as an explicit parameter in the formulation, as well
as in the stability condition and in the numerical dispersion
relation.

In order to calculate the dispersion characteristics, the cross-
section of the waveguide under analysis is discretized and the
boundary conditions imposed. A desired value of the phase
constant 3 is selected. The time domain response is calculated
and, finally, the frequency domain response, i.e. the resonant
frequencies and quality factors of the resonant modes of the
cross-section of the waveguide, is obtained from the spectral
analysis of the time domain response. Each pair of resonant
frequencies and quality factors (f;, Q,) corresponds to one
excited propagating mode, which has the previously fixed
value of # at the frequency f;, and according to [22] an
attenuation constant of

, _ Power loss per unit length = f,

o, = =
! Qi'ng

©

2 x Transmitted power

where v, is the group velocity of the mode. By changing the
value of § and repeating this process the whole dispersion
diagram is obtained. The group velocity is calculated from the
[ curve.

Frequency domain data are usually obtained by applying the
FFT algorithm. Then, the resonant frequencies are calculated
from the local maxima of the spectrum, and the quality factors
can be calculated from the width of the resonant peaks or by
determining the time attenuation factor as described in [23].
However, the FFT approach has two important limitations.
First, there is a limitation in the frequency resolution, which
is roughly the reciprocal of the observation time. Secondly,
there is the windowing of the time domain data; the time
domain response is truncated because it is usually excessively
long. As a consequence of this windowing, the peaks in
the spectrum are widened, the whole spectrum is distorted
(resonant frequencies are shifted from their actual values), and
some weak (low amplitude) resonances may be masked. In
some cases, masking can be avoided and distortion reduced
by using special windows [24], but, in general, distortion
can be reduced and the resolution increased only by making
the window larger, i.e. increasing the simulation time. A
number of alternative spectral estimation procedures have
recently been proposed [25]-[28] in order to overcome these
limitations and improve the efficiency of time-domain methods
for providing frequency domain data.

A. Transverse Magnetization

For waveguides containing transversely magnetized ferrites,
an exponential term must be used. Hence, it is assumed that
the fields have the form

ﬁ($7yv th) = f(x,z,t) eXP(_j/By) (10)
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where y is the direction of propagation, 3 the phase constant
of the mode, and F (and f) denotes any field component.

Substituting (10) into (1) and (2), we obtain the following
equations:

ob
& =ifd. x€—-V,, x&

5 (11)

o 1y,., = ~
a5 = E(Jﬂaz X 4 Vy X h) (12)
where j denotes the imaginary unit.

As in 3D-problems, equations (11) and (12) can easily be
discretized by using central finite-differences. For example,
b7 +1/2 is calculated from

N
Az
+ipez(i,k +1/2))
+ 0220,k 4+ 1/2) (13)

The remaining difference equations related to differential
equations (11) and (12) can be calculated similarly. These
equations, together with the constitutive equations (6) and (7),
allow the application of the FDTD algorithm described in the
preceding section.

If the indirect approach is used to derive the 2D-formulation
for dispersion analysis, the same difference equations are
obtained, but the following substitution must be made

jo — Lo elieny)

)

Moreover, in the indirect approach, although it might seem
that the mesh size in the propagation direction, Ay, could take
any value, there are forbidden values for which the formulation
is not valid. These are given by

2pm
Ay 3
where A, is the wavelength in the guide.

It should be noted that, due to the choice of an exponen-
tial function in (10), all field components become complex
quantities. The difference equations can be separated into
real and imaginary parts; hence, the implementation of the
algorithm requires twice as much memory and CPU time
for arithmetic operations as would be needed if the use of
sinusoidal functions were possible. The discretization mesh
for this reduced 2-D problem is obtained by projecting the
3D-mesh onto the z-z plane (see Fig. 2(a)).

For the 2D-FDTD formulation for dispersion analysis using
the direct approach, the stability condition can be expressed
as [29]

1 2y 1/2
= =Em mr ) W

=p\, p=12,.. (14)
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Fig. 2. 2D-mesh for the analysis of (a) transversely and (b) longitudinally
magnetized ferrite-loaded waveguides.

where c is the velocity of light, €, . the minimum value of
the dielectric constant of the media contained in the guide, and
s is the stability factor, whose value must not exceed unity
to guarantee the numerical stability of the algorithm. If the
indirect approach is used to derive the 2D-FDTD formulation
for dispersion analysis, the corresponding stability condition
has the same form as (15), but the following substitution must
be made:

B*  sin®(BAy/2)

4T (Ag?

B. Longitudinal Magnetization

When the magnetization is purely longitudinal (the
anisotropy purely transverse), both propagation constants
[ and -0 are solutions of Maxwell‘s equations and their
respective fields have reflectional symmetry. Hence, instead
of an exponential term, a sinusoidal one can be used. In other
words, a standing wave can be formed from the forward and
backward waves, shown at the bottom of the page in (16a),
and in

E(x,y,z,t) = e¢(z,y,t)cos(Bz) + €,(z,y,t)sin(Bz) (16b)
where the subscript ¢ denotes the transverse field.

As in the transverse magnetized case, the substitution of
equations (16) into (1) and (2) provides a set of 2D-equations,
which in combination with the constitutive equations (6) and
(7) allow the FDTD algorithm for ferrites to be applied
to the analysis of longitudinally magnetized ferrite-loaded
waveguides. Furthermore, the choice of sinusoidal functions
to describe the behavior of the fields in the z-direction leads
to a real formulation, saving half of the memory and CPU time
required with the exponential choice. For example, for b;H'l/ 2

DyY2(0, 5+ 1/2) = — At(Bey (g +1/2)
’ ep(i,j+1) —eZ(4,4)
Ay
FY2(5,5 4+ 1/2) (17)
If the indirect approach is used, the same difference equation
is obtained but the following substitution must be made

2 sin(BAz/2)
bPo—"n

+

{BZ(::&,y,z,t) } _ {gi((i,’g,’i)) }sin(ﬂz) + {M%ﬁ(zimz;y,t) }Cos(,@z)

(16a)
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Fig. 3.

The discretization mesh is obtained by projecting the 3D-
mesh onto the z-y plane (see Fig. 2(b)).

IV. NUMERICAL RESULTS

To demonstrate the validity of the extended FDTD method
for ferrite treatment, we have used it for the analysis of various
ferrite-loaded waveguides, which are shown in Fig. 3. As an
example for which exact results are available, we have consid-
ered a rectangular waveguide loaded with a lossy transverse
magnetized ferrite slab. Fig. 4 shows the phase constant 3 and
the attenuation constant «’ of the TE;o mode calculated by
FDTD, compared with the exact results. The nonsymmetric
localization of the slab allows a forward and a backward
wave to propagate with different propagation constants. The
frequency-domain results, i.e. resonant frequencies and quality
factors, have been calculated by Prony’s method [16]. As can
be seen, good agreement is obtained. For 1D-problems, like the
one under consideration, the term 1/(Az)2 must be removed
from expression (15).

As examples of 2D-structures, rectangular waveguides
loaded with H-plane ferrite slabs have been studied. One
important application of these structures is in the construction
of four-port differential phase shift circulators. This type
of circulator consists of a folded magic 7" and a 3-dB
sidewall hybrid between that is placed a dual section of
waveguide containing nonreciprocal 45° ferrite phase shifters.
For efficient evacuation of the heat generated within the
ferrite, the H-plane geometry is utilized to implement the
phase shifters. The differential phase shift of these structures
can be increased when dielectric loading is added as shown
in Figs. 3(b)—(d). The results for the propagation constant of
the dominant mode of a rectangular waveguide loaded with a
single H-plane ferrite slab are shown in Fig. 5. These results
have been compared with those obtained by Schelkunoff’s
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Fig. 4. Phase and attenuation constants of the TE19 mode of the rectangular
waveguide loaded with a ferrite slab shown in Fig. 3(a) as a function of
frequency. a = 22.86mm, w = a/3, €, y= 9,4, 7Ms = 2000 G, H; = 200
Oe, o = 0.02, Az = a/12 and s = 1/2. Forward wave: exact; M
FDTD. Backward wave: _ _ _ exact; A FDTD.
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Fig. 5. Phase constant as a function of frequency of the dominant mode of
a rectangular waveguide loaded with a single H-plane ferrite slab, as shown
in Fig. 3(b). @ = 22.86 mm, b = 10.16 mm, w = e¢/4,l = a/8,h = b/6,
€rd = 1, €rp = 12,47Ms = 2000 G, H; = 200 Oe, a = 0, Az = af40,
Az =bf30and s = 0.8. Schelkunoff’s method, _ _ _ FDTD method.

method [15]. Good agreement is observed between these
methods, although there is a slight displacement between the
curves predicted by the two methods.

Fig. 6 shows plots of the differential phase shift correspond-
ing to the dominant mode of a rectangular waveguide loaded
with an H-plane ferrite slab and with an H-plane dielectric slab
for various values of the dielectric slab permittivity. In this
Fig., the onset of the first higher-order mode is marked with
an arrow. It can be observed that the differential phase shift
actually increases as the permittivity of the dielectric slab rises.
Another effect of the dielectric loading is that the bandwidth
is reduced: without dielectric loading an almost flat response
is obtained. On the other hand, when the dielectric slab is
added, the differential phase shift increases rapidly with the
frequency in the upper part of the considered band. Moreover,
the higher the value of the permittivity of the dielectric slab,
the lower the cut-off frequency of the first higher-order mode,
which also reduces the bandwidth of the phase shifter.

One way of increasing the differential phase shift while
conserving the flat form of the curves is to use waveguides
with two or four H-plane ferrite slabs, as shown in Fig. 3(c)
and (d). The differential phase shift characteristics of these
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Fig. 6.  Differential phase shift for the dominant mode of a rectangular
waveguide loaded with an H-plane ferrite slab and an H-plane dielectric slab
(Fig. 3(b)) for various values of the dielectric slab permittivity, €,4. Arrows:
cut-off of the first higher-order mode. @ = 22.86 mm, b = 10.16 mm,
w=af4,l=af/8,h =10/6, ¢ = 12,47 M; = 2000 G, H, = 200 Oe,
a =0, Az = a/40, Az = b/30 and 5 = 0.8.
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(a) Fig 3c, €4=1, H, =200 Oe
20 (a) (b) Fig 3¢, €=12, H, =200 Qe
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Fig. 7.  Differential phase shift for the dominant mode of the structure
shown in the Fig. 3(c) and (d). Arrows: cut-off of the first higher-order mode.
a = 22.86 mm, b = 10.16 mm, w = a/4,1 = a/8,.h = b/6, ¢, 5 = 12,
drMs = 2000 G, o = 0, Az = a/40, Az = b/30 and s = 0.8. Curve a:
Fig. 3(c), e,q = 1, H, = 200 Oe; Curve b: Fig. 3(c), €,q = 12, H, = 200
Oe; Curve c: Fig. 3(c), .4 = 1, H, = 1000 Oe; Curve d: Fig. 3(d), .4 = 1,
H, = 200 Oe.

structures are depicted in Fig. 7 . For the case of two ferrite
slabs, dielectric loading is also considered with similar results
to those obtained in the case of the single ferrite slab. When
the intensity of the internal dc magnetic field is augmented, the
differential phase shift only increases in the lower part of the
band. This is because the resonance frequency is far below the
operating frequency for these examples. For the case of four
ferrite slabs, the bandwidth is reduced because of the onset of
the first higher order mode. A way of increasing the bandwidth
for wideband applications may be to use reduced guides or
wide-band structures such as ridge or T'-septa waveguides.
As an example of a longitudinally magnetized waveguide,
Fig. 8 shows results for the quasi-TE;¢ and quasi-TEq1 modes
of a ferrite-filled square waveguide calculated by FDTD and
by Schelkunof’s method. There is good agreement between
the results obtained with the two methods, although there is a
small discrepancy in the attenuation constants. This is affected
by errors in the determination of the group velocity, which can
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Fig. 8. Phase and attenuation constants of the Quasi-TE;¢ and Quasi-TEp;
modes of the square ferrite-filled waveguide shown in the Fig. 3(d).
a = 2286 mm, e.p= 12, 4nM,= 1500 G. H,= 1000 Oe, o= 0.03,
Az =Ay = a/10 and s = 1/4. Quasi-TE;q: Schelkunoff’s method;
B FDTD. Quasi-TEg;: _ _ _ Schelkunoff’s method; A FDTD.

be important near cut-off, and also by the errors associated
with the computation of Q-factors by Prony’s method, which
are sensitive to the presence of numerical noise in the time-
domain data. Furthermore, for a lossy waveguide, the fields
are still assumed to be of the form given in (10) (or (16)),
which strictly speaking, is only valid for lossless structures
and approximately valid for § >> «o’.

V. CONCLUSION

The FDTD method has been extended to include magnetized
ferrites. The treatment of the ferrite material is based on the
equation of motion of the magnetization vector (differential
approach). The discretization scheme is based on central finite-
differences and linear interpolation. This scheme maintains
the fully explicit nature of the FDTD methods and shares its
advantages for isotropic materials: it is flexible, conceptually
simple, and easy to implement. Other alternative schemes,
such as the rotated Richtmyer finite-difference scheme, can
also be used to discretize Maxwell’s equation together with
the equation of motion [30]. The extended FDTD method
for ferrite treatment provides a powerful tool for analyzing
complex structures such as junction circulators or ferrite
substrate patch antennas.

The extended FDTD method for magnetized ferrites has
been applied to the full-wave analysis of ferrite-loaded
waveguides. The dispersion curves have been calculated by
a 2D- FDTD formulation. A number of numerical results
for both propagation and attenuation constants of various
transversely and longitudinally magnetized ferrite-loaded
waveguides have been obtained and compared with the exact
values or with those obtained by Schelkunoff’s method, with
good agreement being obtained.

APPENDIX

The coefficients of the difference form of the equation of
motion ((6) and (7)) are given by

(18)
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where
D = Y A2 p2(H; + M,)? + dyaltpg(H; 4+ M) +4(o? +1)

(19a)

No = 4(a® + 1) — Y2 AR (H; + My)? (19b)

1
Ny = — [V HiACp2(H; + M) + 2yaAtuo(2H; + M,)

{11

[2]

(3]

[4]

[5]

(71

8]
191
[10]
[11)
[12]

[13]

Ho
+4(a® +1)] (19¢)
Ny = [P HACU (I, + M)
0
—2yM,al\tpe — 4(a? + 1)] (194d)
N3 = —2vAtM, (19)

Ny = 29AH2H; + M,) (19f)

N5 = —dyAtpo(H; + M) (192)
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