
350 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, NO. 2, FEBRUARY 1995

FDTD Analysis of Magnetized Ferrites:

Application to the Calculation of Dispersion

Characteristics of Ferrite-Loaded Waveguides
.Jos6 A. Perecla, Student Member, IEEE,

Miguel A. Solano, Member, IEEE, Angel

Abstract— The finite-difference time-domain (FDTD) method is

extended to include magnetized ferrites. The treatment of the
ferrite material is based on the equation of motion of the magne-

tization vector. Magnetic losses are also included in the equation
of motion by means of Gilbert’s approximation of the phe-
nomenological Landau-Lifschitz damping term. The discretiza-

tion scheme is based on central finite-differences and linear

interpolation. This scheme allows the fully explicit nature of the

FDTD method to be maintained. This extension of the FDTD

method to magnetized ferrites is applied to the full-wave analysis

of ferrite-loaded waveguides. The dispersion curves are calculated

by using a recently proposed 2D-FDTD formulation for disper-
sion analysis which has been adapted to the present problem.
The results for both the phase and attenuation constants of
various transversely and longitudinally magnetized ferrite-loaded
waveguides are compared with the exact values and with those
obtained by means of Schelknnoff’s method.

I. INTRODUCTION

I’ ERRITES are basic materials in the development of non-

reciprocal and control devices such as circulators and

phase shifters due to the fact that the magnetic constitutive

characteristics of ferrites can be controlled by the application

of a dc magnetic bias field. However, the analysis of structures

with magnetized ferrites is normally very complex and in most

cases does not admit an analytical solution. Consequently, the

development of new numerical techniques that are capable of

analyzing these structures is of great interest.

The finite-difference time-domain (FDTD) method is now a

well-established numerical technique for the analysis of a great

variety of electromagnetic problems. It is based on the direct

discretization of Maxwell’s time-dependent curl equations by

US@ central finite-differences [1]. The FDTD method has

been gaining in popularity because it has several advantages.

For example, it leads to an explicit scheme (avoiding matrix

inversion): the time domain solution is obtained directly; and
a broadband frequency response can be obtained from a single

computer simulation. The reported applications of this method

range from radiation and scattering problems [2] to others

involving guided waves [3], [4] or eigenvalue computation [5].

The FDTD method was initially proposed to handle

isotropic, non-dispersive materials [1]. Later extensions have
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made it possible to apply the method to anisotropic materials,

which are characterized by diagonal tensors [5], and also

to dispersive materials [6]–[8]. Recently the FDTD method

has been extended to include more complex media such as

magnetized ferrites [9]–[ 11] and magnetized plasmas [12].

These materials, in addition to their highly dispersive nature,

are characterized by tensorial constitutive parameters with

nonzero off-diagonal elements (tensorial permeability in the

case of ferrites and perrnittivity in that of plasmas). Magnetized

ferrites have been treated by means of the equation of motion

of the magnetization vector (differential approach) [9]–[1 1],

while magnetized plasmas have been handled by working with

the perrnittivity tensor and applying recursive convolution

[12]. Based on the duality of these media, both approaches

should be valid for analyzing both media. A formulation based

on the spatial network method has been presented in [13] that

allows ferrites to be analyzed in the time-domain and is also

based on the equation of motion of the magnetization vector.

However, the FDTD method is simpler and more efficient

than the spatial network method [14].

This paper provides a detailed presentation of the extended

FDTD formulation for the treatment of saturated magnetized

ferrites, which was briefly introduced in [11]. Furthermore,

the new algorithm is applied to the full-wave analysis of

waveguides containing ferrites by adapting a recently proposed

2D-FDTD formulation to the present problem. Because of the

practical relevance of the distinction, two different cases are

considered according to the relative angle between the direc-

tion of the dc magnetic field and the wave propagation: the

transverse and the longitudinal magnetization cases. The re-

sults for both the phase and attenuation constants are compared

with the exact values and with those obtained by Schelkunoff’s

method [15]. For a given phase constant, the frequencies and

quality factors (the latter should be calculated to obtain the
corresponding attenuation constants) a“e computed by using

Prony’s method [16].

II. FORMULATION

Maxwell’s time-dependent curl equations can be expressed

as

as
i%—=–u Xl? (1)
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(2)

where ~ is the electric field, : the magnetic field, ~ the

magnetic flux density, e. is the perrnittivity of free-space, and

e. the dielectric constant. An electric constitutive equation of

the form ~ = c.~o~ has been assumed in (2).

In addition to (1) and (2), three more scalar equations—the

magnetic constitutive equations—must be taken into account.

These equations describe the interaction of the electromagnetic

fields with the ferrite from a macroscopic point of view. It is

assumed that the ferrite is saturated by a dc magnetic field

applied in the z-direction, l?i = HZ d,. The interaction of

the magnetic field with the ferrite can be described by the

equation of motion of the magnetization vector with Gilbert’s

approximation of the Landau-Lifschitz damping term [17].

Under the small signal approximation, the equation of motion

can be written in terms of ~ and l?, and in scalar form, as

(3)

Fig. 1. Three-dimensional extended Yee mesh for the analysis of magnetized
ferrites with dc magnetic field applied in the z-direction.

A. DiscretiZation

Since the dc magnetic field is applied in the z-direction, the

H. and HY components of the magnetic field are coupled.

Hence, these two components must be discretized at the

same points of the space and at the same instant of time.

Furthermore, the E field and the S field must be discretized

at the same instant of time. Following Yee’s notation [1], any

function of space and time can be discretized as Fn(i, j, k) =

F(iAx, jzliy, kAt, nAt) = F(z, y, z, t), where Az, Ay, and

Az are the space increments in the x, y and z coordinate

directions; At is the time step; and i, j, k and n are integers.

Taking these considerations into account, Yee’s unit cell [1]

is modified as shown in Fig. 1.

(+a ‘: z 8HZ

)

Equation (5) is directly incorporated into equation (l).
— – vor&- “) The resulting equations (1) and (2) are discretized as in the

isotropic case [1]. Equations (3) and (4) are discretized in

B. = poHZ (5)
time by using central finite-differences and linear interpolation.

After (3) and (4) have been discretized, they are decoupled (by

where -y is the gyromagnetic ratio, a the damping constant, ‘+112) and we obtain‘+1’2 and Hvsolving for HZ

Lo the permeability of free-space, and M, is the saturation

magnetization.

An essential assumption in the derivation of the equation of

motion is that the ferrite is infinite. In actual devices, the ferrite

sample is obviously finite. As a consequence, demagnetizing

effects appear, hence the dc magnetic field inside the ferrite

sample, Hi is always less than (or equal to for some particular

sample geometries) the applied dc magnetic field, HO. Only for

some simple ferrite sample geometries can the demagnetizing

factors be calculated analytically [17]. The evaluation of Hi in

actual complex samples is a problem that is not considered in

this paper, where it is assumed that the value of Ht is known.

The dispersive and anisotropic nature of the magnetized

ferrite is modeled in the time domain by equations (3)-(5).

This is analogous to modelling by means of the Polder

permeability tensor in frequency domain. In fact, this tensor

can easily be obtained from (3)–(5) by assuming a time

dependence of the form e~wt for the fields vectors.

Equations (3)–(5), which are the required magnetic con-

stitutive relations, together with (1) and (2) form a system
of coupled differential equations. To simulate the electro-

magnetic wave propagation inside a ferrite material by a

finite-difference model, these equations must be discretized

by means of a suitable scheme. This discretization provides

a system of difference (algebraic) equations that replace the

original differential problem.

Hn+l/2 z foH;-1/2 + flB:+l/2 + f2B:-1/2
z

+ f@:~112 + f4B;–1’2 -t f5H;–1’2 (6)

H;+1f2= foH;-1/2 + .flB;+l/2 + f2B:-1/2

– f3B:+1/2 – j; B:-1/2 – f5H:-1/2 (7)

Expressions for evaluating the coefficients fi (i = 0,..,5) are

given in the appendix.

After this discretization in time, the field components in

equations (6) and (7) are still continuous functions of the

space. Hence, these equations are valid for any number of

space dimensions and their evaluation at the required mesh

points is sufficient to obtain the H. and IIv components of

the magnetic field at the instant t = (n+ l/2) At.

B. FDTD Algorithm for Magnetized Ferrites

The new FDTD algorithm for magnetized ferrites has the

following steps in each time iteration:

1) B~+l’2, BJ+l’2, and H~+l’2 are calculated by using
the difference form of (1).

2) H:+l’2 and H;+l’2 are calculated by using (6) and

(7), respectively, where H~-1/2, HJ-1/2, B$-1/2 and

Bn- 1/2 are obtained fro~m the previous iteration, and
B:+l/2

x ‘+1’2 are obtained from the step 1. Asand By
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can be seen in Fig. 1, (6) and (7) are discretized at

mesh points where both H. and Hy are available, but

only one component of the magnetic flux density (13V

or Bx ) is known. The unknown component is calculated

by using linear interpolation. For example, at the point

(i, j + 1/2. k + 1/2) (see Fig. 1), 13Y is calculated from

E&(i,j + l/2, k + 1/2) =;(l?(i + l/2, j,k + 1/2)

+Bg(i+l/2, j+l, k+l/2)

+ B,(i – l/2, j, k + 1/2)

+ B,(i – l/2, j + l,k + 1/2))

(8)

3) E!+l, EJ+l, and E&+l are calculated by using the

difference form of (2).

These three steps are repeated in each time iteration in order

to obtain the time domain electromagnetic response in the

ferrite material.

The unit cell shown in Fig. 1, can be simplified by removing

Hz(i + l/2, j, k + l/2)and IIy(i, j + 1/2, k + 1/2), which

leads to a scheme with a unit cell of eight field components.

In order to carry out step 2 of the algorithm, these removed

field components can be calculated by interpolation as in

the case of the components Elz (i + 1/2, j, k + 1/2) and

13u(i, j + 1/2, k + 1/2). This is a more efficient approach;

however, a drawback arises when the ferrite sample is next

to a metallic wall. For example, if a metallic wall is located

in a plane j = constant, the interpolation of HY at the point

(i, j + 1/2, k + 1/2) requires the value of Hg in the metallic

plane, which is unknown. Consequently, extrapolation must be

used, which may introduce some inaccuracy. If the metallic

wall is perpendicular to the dc magnetic field, HZ is zero at

the wall and the eight-component unit cell can be used without

any extrapolation.

III. FULL-WAVE ANALYSIS OF FERRITE-LOADED WAVEGUIDES

Apart from the practical interest of using FDTD tech-

niques to study propagation characteristics in waveguides and

transmission lines, within the FDTD approach there is an

important topic: the design of optimal absorbing boundary

conditions to terminate guides with matched loads. This design

problem requires the propagation constants of the first modes

of the terminal guides to be known. The full-wave analysis of

guiding structures is a 3-D problem that can be reduced to an

equivalent 2-D problem by noticing that for a uniform guide
with an arbitrary cross-section, the functional dependence

of the modes in the direction of propagation is analytically

known. In general, an exponential term must be used; however,

in particular cases (isotropic, uniaxial or biaxial materials)

sinusoidal functions can be used. Two different approaches

have been proposed to derive the 2-D FDTD formulation.

In the direct approach, the modal term is first included in

the differential form of Maxwell’s equations, and then the

discretization is carried out in a 2-D space (the transverse

section of the guide) [18], [19]. In the indirect approach,

Maxwell’s curl equations are first discretized in a 3-D space

and then the formulation is reduced by substituting for the

modal term [20], [21 ]. Both approaches involve a 2D-mesh.

In this paper, the direct approach is adopted because the

3-D discretization introduces a larger numerical dispersion

error than the 2-D discretization. Moreover, although the 3D-

problem is also reduced to a 2D-problem in the indirect

approach, the spatial increment in the direction of propagation

appears as an explicit parameter in the formulation, as well

as in the stability condition and in the numerical dispersion

relation.

In order to calculate the dispersion characteristics, the cross-

section of the waveguide under analysis is discretized and the

boundary conditions imposed. A desired value of the phase

constant /3 is selected. The time domain response is calculated

and, finally, the frequency domain response, i.e. the resonant

frequencies and quality factors of the resonant modes of the

cross-section of the waveguide, is obtained from the spectral

analysis of the time domain response. Each pair of resonant

frequencies and quality factors (fi, Q,) corresponds to one

excited propagating mode, which has the previously fixed

value of /3 at the frequency f~, and according to [22] an

attenuation constant of

Power loss per unit length
0; =

_ ~.fL

2 x Transmitted power – Qivg,
(9)

where Vg, is the group velocity of the mode. By changing the

value of /3 and repeating this process the whole dispersion

diagram is obtained. The group velocity is calculated from the

,13(f) curve.

Frequency domain data are usually obtained by applying the

FFT algorithm. Then, the resonant frequencies are calculated

from the local maxima of the spectrum, and the quality factors

can be calculated from the width of the resonant peaks or by

determining the time attenuation factor as described in [23].

However, the FFT approach has two important limitations.

First, there is a limitation in the frequency resolution, which

is roughly the reciprocal of the observation time. Secondly,

there is the windowing of the time domain data; the time

domain response is truncated because it is usually excessively

long. As a consequence of this windowing, the peaks in

the spectrum are widened, the whole spectrum is distorted

(resonant frequencies are shifted from their actual values), and

some weak (low amplitude) resonances may be masked. In

some cases, masking can be avoided and distortion reduced

by using special windows [24], but, in general, distortion

can be reduced and the resolution increased only by making

the window larger, i.e. increasing the simulation time. A

number of alternative spectral estimation procedures have

recently been proposed [25]–[28] in order to overcome these

limitations and improve the efficiency of time-domain methods

for providing frequency domain data,

A. Transverse Magnetization

For waveguides containing transversely magnetized ferrites,

an exponential term must be used. Hence, it is assumed that

the fields have the form

~(z, g, z, t) = ~($, 2,L) exp(–jfly) (lo)
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where y is the direction of propagation, ,/3 the phase constant

of the mode, and F (and f) denotes any field component.

Substituting (10) into (1) and (2), we obtain the following

equations:

(11)

(12)

where -j denotes the imaginary unit.

As in 3D-problems, equations (11) and (12) can easily be

discretized by using central finite-differences. For example,

b8+1’2 is calculated from

(e~(i, k + 1) – e~(i, k)
b;+l/2(i, k + 1/2) =At

Az

+j~e~(i, k + 1/2))

+ b;-112(i, k + 1/2) (13)

The remaining difference equations related to differential

equations (11 ) and (12) can be calculated similarly. These

equations, together with the constitutive equations (6) and (7),

allow the application of the FDTD algorithm described in the

preceding section.

If the indirect approach is used to derive the 2D-formulation

for dispersion analysis, the same difference equations are

obtained, but the following substitution must be made

jP ~ 1 – exp(–j~Ay)

Ay

Moreover, in the indirect approach, although it might seem

that the mesh size in the propagation direction, Ay, could take

any value, there are forbidden values for which the formulation

is not valid. These are given by

2p7r
Ay=—

B
=p& p= 1,2, . . . (14)

where Jg is the wavelength in the guide.

It should be noted that, due to the choice of an exponen-

tial function in (10), all field components become complex

quantities. The difference equations can be separated into

real and imaginary parts; hence, the implementation of the

algorithm requires twice as much memory and CPU time

for arithmetic operations as would be needed if the use of

sinusoidal functions were possible. The discretization mesh

for this reduced 2-D problem is obtained by projecting the

3D-mesh onto the Z-Z plane (see Fig. 2(a)).

For the 2D-FDTD formulation for dispersion analysis using

the direct approach, the stability condition can be expressed

as [29]

/7 1 f22\ 112

&At [s=— — —
(AL)2 + (A:)z + % )

(15)

353

Fig. 2. 2D-mesh for the analysis of (a) transversely and (b) longitudinally
magnetized ferrite-loaded waveguides.

where c is the velocity of light, G.mtn the minimum value of

the dielectric constant of the media contained in the guide, and

s is the stability factor, whose value must not exceed unity

to guarantee the numerical stability of the algorithm. If the

indirect approach is used to derive the 2D-FDTD formulation

for dispersion analysis, the corresponding stability condition

has the same form as (15), but the following substitution must

be made:

P2 , sin2(@Ay/2)

4 (AY)2

B. Longitudinal Magnetization

When the magnetization is purely longitudinal (the

anisotropy purely transverse), both propagation constants

/3 and -/3 are solutions of Maxwell’s equations and their

respective fields have reflectional symmetry. Hence, instead

of an exponential term, a sinusoidal one can be used. In other

words, a standing wave can be formed from the forward and

backward waves, shown at the bottom of the page in (16a),

and in

E(~,y,z,t)= Zt(Z, y, t)cos(@z) + L(z, Y, t)sin(P~) (16b)

where the subscript t denotes the transverse field.

As in the transverse magnetized case, the substitution of

equations (16) into (1) and (2) provides a set of 2D-equations,

which in combination with the constitutive equations (6) and

(7) allow the FDTD algorithm for ferrites to be applied

to the analysis of longitudinally magnetized ferrite-loaded

waveguides. Furthermore, the choice of sinusoidal functions

to describe the behavior of the fields in the z-direction leads

to a real formulation, saving half of the memory and CPU time
n+l/2

required with the exponential choice. For example, for bz

&+l/2(i, j + 1/2) = - At(/3eJ(i, j + 1/2)z
+e$(i, j+ 1) – e~(i, j)

)

+ b#-’/2(i:l 1/2) (17)

If the indirect approach is used, the same difference equation

is obtained but the following substitution must be made

~ ~ 2 sin(~Az/2)

& –

(16a)
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Fig. 3. Cross-section of various ferrite-loaded waveguides

The discretization mesh is obtained by projecting the 3D-

mesh onto the x-y plane (see Fig. 2(b)).

IV. NUMERICAL RESULTS

To demonstrate the validity of the extended FDTD method

for ferrite treatment, we have used it for the analysis of various

ferrite-loaded waveguides, which are shown in Fig. 3. As an

example for which exact results are available, we have consid-

ered a rectangular waveguide loaded with a lossy transverse

magnetized ferrite slab. Fig. 4 shows the phase constant /? and

the attenuation constant a’ of the TEIO mode calculated by

FDTD, compared with the exact results. The nonsymmetric

localization of the slab allows a forward and a backward

wave to propagate with different propagation constants. The

frequency-domain results, i.e. resonant frequencies and quality

factors, have been calculated by Prony’s method [16]. As can

be seen, good agreement is obtained. For lD-problems, like the

one under consideration, the term l/(Az)2 must be removed

from expression (15).

As examples of 2D-structures, rectangular waveguides

loaded with H-plane ferrite slabs have been studied. One

important application of these structures is in the construction
of four-port differential phase shift circulators. This type

of circulator consists of a folded magic T and a 3-dB

sidewall hybrid between that is placed a dual section of

waveguide containing nonreciprocal 45° ferrite phase shifters.

For efficient evacuation of the heat generated within the

ferrite, the H-plane geometry is utilized to implement the

phase shifters. The differential phase shift of these structures

can be increased when dielectric loading is added as shown

in Figs. 3(b)–(d). The results for the propagation constant of

the dominant mode of a rectangular waveguide loaded with a

single H-plane ferrite slab are shown in Fig. 5. These results

have been compared with those obtained by Schelkunoff’s

700 15

600 -

~ 500

\

L o

m
2& 200 - b’..

A

100

01 “ 10
6789 10 11 12 13

FREQUENCY (G Hz)

Fig. 4. Phase and attenuation constants of the TEIO mode of the rectangular

waveguide loaded with a ferrite slab shown in Fig. 3(a) as a function of
frequ&rcy. a = 22.86 mm, w = a/3, e,f= 9,4, TJMS =’ 2000 G, Hi = 200
Oe, a = 0.02, Ax = af12 and s = 1/2. Forward wave: exact; ❑

FDTD. Backward wave: _ _ _ exacC fJ FDTD.

350

-300 - Backward Wave
E

>z50
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:150
I
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6789101112 13
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Fig. 5. Phase constant as a function of frequency of the dominant mode of

a rectangular waveguide loaded with a single H-plane ferrite slab, as shown
in Fig. 3(b). a = 22.86 mm, b = 10.16 mm, w = a/4,1 = a/8, h = b/6,

%i = 1, ~,~ = 12,4zMS = 2000 G, Hi = 200 Oe, a = O, Ax = a/40,
A,z = b/30 and. = 0.8. _ Schelkunoff’s method, ___ FDTD method.

method [15]. Good agreement is observed between these

methods, although there is a slight displacement between the

curves predicted by the two methods.

Fig. 6 shows plots of the differential phase shift correspond-

ing to the dominant mode of a rectangular waveguide loaded

with an H-plane ferrite slab and with an H-plane dielectric slab

for various values of the dielectric slab permittivity. In this

Fig., the onset of the first higher-order mode is marked with

an arrow. It can be observed that the differential phase shift

actually increases as the permittivity of the dielectric slab rises.
Another effect of the dielectric loading is that the bandwidth

is reduced: without dielectric loading an almost flat response

is obtained. On the other hand, when the dielectric slab is

added, the differential phase shift increases rapidly with the

frequency in the upper part of the considered band. Moreover,

the higher the value of the permittivity of the dielectric slab,

the lower the cut-off frequency of the first higher-order mode,

which also reduces the bandwidth of the phase shifter.

One way of increasing the differential phase shift while

conserving the flat form of the curves is to use waveguides

with two or four H-plane ferrite slabs, as shown in Fig. 3(c)

and (d). The differential phase shift characteristics of these
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DIFFERENTIAL PHASE SHIFT (rad/m)
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Fig. 6. Differential phase shift for the dominant mode of a rectangular
waveguide loaded with an H-plane ferrite slab and an H-plane dielectric slab

(Fig. 3(b)J for various values of the dielectric slab permittivity, er~. Arrows:
cut-off of the first higher-order mode. a = 22.86 mm, b = 10.16 mm,

to = a/4,1 = a/8, h = b/6, e,f = 12,4rrA4, = 2000 G, Hz = 200 Oe,
a = O, Ax = a/40, Az = b/30 and s = 0.8.

DIFFERENTIAL PHASE SHIFT (rad/rn)

1 /(b) I
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20 -(a) (b) Fig %, E,d=12, H, =200 Oe

(c) F,g 3,, Ecd=l, H,=1OOO 0.

(d) FIg 3d, G,,j=l , HI=200 Oe

10
6.5 7.5 ?3.5 9.5 10.5 11.5 12.5

FREQUENCY (GHz)

Fig. 7. Differential phase shift for the dominant mode of the structure
shown in the Fig. 3(c) and (d). Arrows: cut-off of the first higher-order mode.
a = 22.86 mm, b = 10.16 mm, w = a/4,1 = a/8, h = b/6, Crf = 12,

4KAIS = 2000 G, a = O, AX = a/40, A: = b/30 and s = 0.8. Curve a
Fig. 3(c), erd = 1, H, = 200 Oe; Curve b: Fig. 3(c), e,d = 12, Hz = 200

oe; Curve c: Fig. 3(c), ~rd = 1, H, = 1000 Oe; Curve d: Fig. 3(d), Erd = 1,
H, = 200 Oe.

structures are depicted in Fig. 7 . For the case of two ferrite

slabs, dielectric loading is also considered with similar results

to those obtained in the case of the single ferrite slab. When

the intensity of the internal dc magnetic field is augmented, the

differential phase shift only increases in the lower part of the

band. This is because the resonance frequency is far below the

operating frequency for these examples. For the case of four

ferrite slabs, the bandwidth is reduced because of the onset of

the first higher order mode. A way of increasing the bandwidth

for wideband applications may be to use reduced guides or

wide-band structures such as ridge or T-septa waveguides.

As an example of a longitudinally magnetized waveguide,

Fig. 8 shows results for the quasi-TE1o and quasi-TEol modes

of a ferrite-filled square waveguide calculated by FDTD and

by Schelkunof’s method. There is good agreement between

the results obtained with the two methods, although there is a

small discrepancy in the attenuation constants. This is affected

by errors in the determination of the group velocity, which can

355

FREQUENCY (G Hz)

Fig. 8. Phase and attenuation constants of the Quasi-TElo and Quasi-TEo 1
modes of the square ferrite-filled waveguide shown in the Fig. 3(d).

a = 22.86 mm, C.f= 12, 47rLf== 1500 G. HZ= 1000 Oe, a= 0.03,
Ax =Ay = a/10 and 5 = 1/4. Quasi- TElo: _ Schelkunoff’s method
■ FDTD. Quasi-TEol: _ _ _ Schelkunofrs method A FDTD.

be important near cut-off, and also by the errors associated

with the computation of Q-factors by Prony’s method, which

are sensitive to the presence of numerical noise in the time-

domain data. Furthermore, for a lossy waveguide, the fields

are still assumed to be of the form given in (10) (or (16)),

which strictly speaking, is only valid for lossless structures

and approximately valid for /? >> a’.

V. CONCLUSION

The FDTD method has been extended to include magnetized

ferrites. The treatment of the ferrite material is based on the

equation of motion of the magnetization vector (differential

approach). The discretization scheme is based on central finite-

differences and linear interpolation. This scheme maintains

the fully explicit nature of the FDTD methods and shares its

advantages for isotropic materials: it is flexible, conceptually

simple, and easy to implement. Other alternative schemes,

such as the rotated Richtmyer finite-difference scheme, can

also be used to discretize Maxwell’s equation together with

the equation of motion [30]. The extended FDTD method

for ferrite treatment provides a powerful tool for analyzing

complex structures such as junction circulators or ferrite

substrate patch antennas.

The extended FDTD methcjd for magnetized ferrites has

been applied to the full-wave analysis of ferrite-loaded

waveguides. The dispersion curves have been calculated by

a 2D- FDTD formulation. A number of numerical results

for both propagation and attenuation constants of various

transversely and longitudinally magnetized ferrite-loaded

waveguides have been obtained and compared with the exact

values or with those obtained by Schelkunoffs method, with

good agreement being obtained.

APPENDIX

The coefficients of the difference form of the equation of

motion ((6) and (7)) are given by

j-i= g2=o,..,5 (18)
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where

D = #At2&;(Hi + M.)2 +4q@!Atpo(Hi +Ms) +4(CU2 + 1)

(19a)

No = 4(a2 + 1) – y2At2p:(H~ + M.)2 (19b)

N~ = : [#HJM2~;(Hi + M.) + 2’ya!Atvo(21Z + ~s)

+4(a2 + 1)] (19C)

N2 =: [-f2H#M2~:(H;+ M.)

–2’yM.a!At#o – 4(CS2+ 1)] (19d)

N3 = –2yAtM. (19e)

N4 = 27 At(2Hi + M,) (19f)

iV5 = –47At~o(Ifi + M.) (19g)
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